

Module 11: Cryptography

Caesar to Public-Key to Quantum: the Math and Practice

For my next trick, Iôll need two volunteersé

ÅStand at opposite sides of the room

ÅYou are now ñAliceò and ñBobò

ÅThe class is ñEveò

ÅBob, tell Alice how many siblings you have, WITHOUT letting the Eve know

ÅNow Iôll give you both an ñxò

ÅAlice, tell Bob your age, in terms of x!

ÅEve: can you tell what the age was?

ÅYouôve just encrypted data (your age) with a key (x) and send it!

ÅCryptography is important!

ÅWhat if Alice and Bob are an ocean apart?

Module 11: Cryptography

Module 11: Cryptography

SF Switch

RIR

ISP

ISP

RIR

ac.ox.uk

utoronto switch

There are a lot of intermediates
Between here and Oxford!

World map (RIRs) adapted from [18]

Ethernet, TCP/IP and HTTP are all plain -text!

Module 11: Cryptography

Byte 0 Byte 1 Byte 2 Byte 3

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Ethernet
Header ï
preamble &
MAC Addresses,
5.5 Words

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 Ethernet
Preamble

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1

0 0 1 0 1 0 0 1 0 1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 1 Source MAC

1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1

1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 Destination MAC

Length 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 (40 TCP/IP + 138 HTTP/Data)

IP Word 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 IPv4-len 5

IP Word 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 No Fragment

IP Word 2 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1 0 0 TTL 60-TCP

IP Word 3 0 1 1 1 1 1 1 1 0 1 127.0.0.1

IP Word 4 0 1 1 1 1 1 1 1 0 1 127.0.0.1

TCP Word 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 Port 80

TCP Word 1 0 Sequence 0

TCP Word 2 0 Ack. 0

TCP Word 3 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 ACK PSH 2K

TCP Word 4 X X X X X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CS ?

HTTP Header
(TCP data)

Page Data

Date: Mon, 7 Jul 2014 08:12:31 GMT
Content - Type: text/plain; charset =us - ascii
Server: Apache/2.4.9
Status - Code: 200

Hello World!

Text is binary
encoded as
ASCII or UTF

Ethernet Footer X CS ?

We need a way to encrypt our HTTP data!

ÅWe do this with HTTPS

ÅStands for HTTP Secure

ÅIt uses a shared private key (like our ñxò) to encrypt the HTTP data

ÅIt sends over the network with the encrypted data

ÅAlice and Bob can decrypt with the private key on the other end

ÅA private key, for HTTPS, looks like the ñ*.pemò and ñ*.ppkò file you used!

ÅItôs like x, just a very big number!

ÅOur end goal is to understand how this worksé

Module 11: Cryptography

ÅCryptography is a mathematical area of study

ÅIt therefore has its own nomenclature and notation

conventions

ÅCryptography is concerned with two things:

ÅEncrypting/decrypting messages

ÅAuthenticating recipients

ÅBoth of these can be cracked to gain access to an encrypted system.

ÅA code is replacing each word or other semantic structure with an equivalent one.

ÅñCode wordsò for things is an example.

ÅEven using another language not understood by anyone but the sender and recipient is a

type of code;

ÅThis was used in WWII by the United States, who used Navajo speakers to send coded messages.

ÅA cipher is doing so with individual letters.

ÅDue to the nature of digital data, this is what is most common in computing

Module 11: Cryptography

[30]

Ciphers have a special mathematics to them

ÅAn alphabet , generally represented by the letter Ǵ, is the set of all possible letters.

ÅE.g. Ǵ={0,1} is the binary alphabet

ÅǴ={ a,b,c é X,Y,Z} is the Latin alphabet

ÅAlphabets can be anything; numbers, letters, symbols, sounds, signals, whatever

the cipher will be transferred or read in.

ÅA string is a ñlistò of elements in an alphabet: for instance, ñBillyò is a string in the
Latin alphabet; ñ01100001ò is a string in the binary alphabet.

ÅǴn represents the set of all strings on Ǵ of length n.

ÅE.g. for Ǵ={0,1}, Ǵ2={ñ00ò,ñ01ò,ñ10ò,ñ11ò}

ÅFor Ǵ={ a,b,cé}, ñtreeò ɴǴ4

ÅFor any Ǵ, Ǵ0={ñò}

Module 11: Cryptography

ÅǴ* represents the set of all strings on Ǵ of any length (including 0)

ÅIf Ǵ is {0,1}, then Ǵ* is the set of all binary strings. This can also be represented as {0,1} *.

ÅIf Ǵ={ a,b,c}, then ñaabcaò ɴ Ǵ*, but ñaabcdò is not.

ÅIn general, Ǵn Ṓ Ǵ* ᶅn ɴᴓ

ÅA simple cipher is a cipher in which each character of input is mapped to the same encoded

character, every time.

ÅA simple cipher has an encoding function E, and a decoding function D.

ÅE(x) takes a character x, and returns its encoded version. Since the cipher is simple, the encoded

version is the same, every time.

ÅD(y) takes an encrypted character and returns the original; in other words, it returns the x value

that would make E(x) return y.

ÅSymbolically, D(E(x))=x; this makes sense, as we need to get the same message back after decryption!

ÅIt is also true that E(D(x))=x;

ÅIt therefore follows that in general, E=D -1 and D=E -1.

Module 11: Cryptography

The encrypted and decrypted data do not have to be a part of the same alphabet,
though!

ÅConsider a (very) simple cipher to encrypt binary characters: 0s are mapped to 2s and 1s are mapped to

3s.

ÅE.g. E(ñ100110ò)=ñ233223ò.

ÅThis is a valid cipher.

ÅWe can say that the raw (unencrypted) text is on the alphabet Ǵ={0,1}, and the encrypted text is on a

different alphabet, ǧ={2,3}.

ÅWe therefore say that E maps from Ǵ to ǧ. Symbolically:

ÅE: Ǵ ǧ

ÅRead ñE is such that Ǵ maps to ǧò or ñE maps Ǵ to ǧò.

ÅConsequently, D: ǧ Ǵ

ÅWhat this means is that E(x) takes some x in Ǵ and returns some y in ǧ, and D(y) takes some y in ǧ and

returns some x in Ǵ.

Module 11: Cryptography

In practice, how is this used?

ÅOne of the first examples came from Julius Caesar

ÅFrom whom we also get the month of July

ÅNot Caesar salad though.

ÅCaesar was a Roman General, who led many ambitious

conquests

ÅHe needed a way for his men to communicate from afar!

ÅHe gave them a number from 0-26 as a key

ÅThe cipher was to ñshiftò each letter by that number

ÅThis mapped Ǵ Ǵ where Ǵ ={ a,b,c é z}

Module 11: Cryptography

abcdefghijklmnopqrstuvwxyz

defghijklmnopqrstuvwxyzabc

[31]

26 Keys isnôt very many!

ÅWe can just try all 26!

ÅThis is a brute -force attack

ÅWe can use an encoding table to increase the number of

possible keys drasticallyé

ÅFor all 26 letters, this is 26*25*24é*3*2*1=26!=
4.0329146*1026 possibilities!

ÅThis would take a lot of work to crack!

ÅUnless weôre smart about ité

ÅWe can use letter frequencies to our advantage!

ÅFor instance, all words need vowels!

ÅThis reduces us to 5!21!= 6.131 x 1021

Module 11: Cryptography

x E(x)

A D

B A

C H

D F

E E

F B

G C

H G

We can avoid this with compound ciphersé

ÅA compound cipher might map the same character to a different encoded character in two different

places in the string.

ÅCompound ciphers operate on entire strings, not single characters;

ÅE: Ǵ* ǧ* and D: ǧ* Ǵ*

ÅA simple example is doing a Caesar shift up by n on the nth character of a string.

ÅE.g. E(ñaaaaaaaò)=ñbcdefghò. E(ñoneò)=ñpphò.

ÅOf course, it doesnôt have to be that simply defined: it can be up one the first time, down five the
second, up eighteen the third, etc.

ÅIn this case, the list [1,-5,18é] is our key! In this type of cipher, where we shift a letter a different

amount each time, our key must be the length of our message.

ÅThis is known as a one -time pad , and it is impossible to crack. Think about it: we could choose

our key to get any message we want from any encrypted text! E.g.: if a key of [1,4,2] encrypts

ñeggò to ñfkiò, we can use a key of [1,4,2] to take it back to ñeggò, or a key of [-8,-3,2] to decrypt it

as ñnogò!

Module 11: Cryptography

We use a compound ciphers encrypt HTTPSé

ÅVery short messages are encrypted on a one-time pad ï perfect encryption!

ÅLonger ones repeat that pad

Å00101101 00101101 00101101 00101101 00101101 00101101 é

ÅWe still have a problemé

ÅHow can Alice and Bob share the private key when theyôre an ocean apart?

ÅWe use public-key encryption for this!

Module 11: Cryptography

Public-key encryption uses factorisation

ÅGiven p=29 and q=57, whatôs n=p*q?

ÅWhat two prime numbers multiply to get 2201?

Åp and q are the private keys!

ÅThey can send n over the network without fear of p and q being discovered!

Ån is the public-key

ÅAlice sends Bob some information with n that allows him to find p and q

ÅThe math is rather complicatedé

ÅSee Public Key.xlsx for an example

ÅThis public -key encryption allows them to communicate without sharing a key first!

Module 11: Cryptography

Weôve dealt with the encryptioné

ÅWhat about authentication?

ÅIôll need four different volunteersé

ÅAlice and Bob want to talké

ÅBut Eve wants to listen!

ÅEve can pretend to be both Alice and Bob

ÅThis is a man -in -the -middle attack

ÅOur fourth person, whom weôll call by his name is trusted by both

ÅAlice can ask him if the person on the other end is actually Bob

ÅThey do that with certificates

Module 11: Cryptography

Letôs use SSL!

ÅWeôll use OpenSSL with web.py

Åyum install gcc #GCC is a compiler needed to make the SSL server

Åyum install python -devel #Needed to interface c with python

Åyum install pyOpenSSL #The actual SSL python libraries

ÅNow we need as SSL certificate

Åopenssl genrsa -des3 -out pyssl.key 1024

Åopenssl req -new -key pyssl.key -out pyssl.csr

Åopenssl x509 -req -days 365 -in pyssl.csr -signkey pyssl.key -out pyssl.crt

ÅAdd the following lines to your web.py file

Åfrom web.wsgiserver import CherryPyWSGIServer

ÅCherryPyWSGIServer.ssl_certificate = "./pyssl.crt"

ÅCherryPyWSGIServer.ssl_private_key = "./ pyssl.key"

Module 11: Cryptography

Weôve now created a secure
HTTP server!

This would now be safe to collect
private data on, like credit card
information

