

DEEP 2014 ï Cloud Computing & Security

Module 2 ï So how do computers work anyways?

Computers are logical

ÅYour computer can tell you that 1+1=2. It canôt
write you a sonnet.

ÅIt operates on two values: 0 and 1

ÅIt has some basic logical functions:

ÅNOT: turns a 0 into a 1, and a 1 into a 0

ÅAND: takes two values: returns 1 if both are 1,

0 if either or both is 0

ÅOR: takes two values: returns 0 if both are 0, 1

if either or both is 1

ÅThese logical functions are made with wires

Module 2 ï So how do computers work anyways?

x

X OR y
x

y

X AND y
x

y

NOT x

So how do gates work anyways?

Module 2 ï So how do computers work anyways?

x

x OR y

x

y

x AND y x

y

NOT x

1V

0V

1V

0V

0V

1V

Mechanical gates

ÅSwitches require a human to switch them!

ÅWe can use a magnet instead

ÅCalled a relay

Electrical Gates

ÅVacuum tubes

ÅWork by making a vacuum conductive

ÅTransistors

ÅWork by making a semiconductor conductive

Module 2 ï So how do computers work anyways?

Transistors

ÅBased on semiconductors

ÅSemiconductors work on doping

ÅAct like electronically controlled

switches

Module 2 ï So how do computers work anyways?

[14]

[15]

Mechanical switches -

Module 2 ï So how do computers work anyways?

x

x OR y

x

y

x AND y x

y

NOT x

1V

0V

1V

0V

0V

1V

 - to transistors

Module 2 ï So how do computers work anyways?

x

x OR y

x

y

x AND y x

y

NOT x

1V

0V

1V

0V

0V

1V

Binary!

ÅDecimal (base 10) uses 0-9

ÅBinary (base 2) uses 0-1

Å 9710=01100001 2
ÅParallel wires carry binary information

ÅWe can do math with binary:

ÅWhat just happened?

Å0+0=0; 1+0=0; 0+1=0; 1+1=0 carry 1

ÅIf carrying then add 1 to the value

Å0 becomes 1, 1 becomes 0 carry another 1!

Module 2 ï So how do computers work anyways?

(tens)(ones) (128s) (64s) (32s) (16s) (8s) (4s) (2s) (ones)

8

0b01100001

OR

0d97

011000 01

 97 01100001

+ 51 +00110011

=148 =10010100

Gates & binary: a simple adder

Module 2 ï So how do computers work anyways?

Memory: an RS Latch

A register is a bunch of latches together ï
it stores multi -bit values (a number)!

Module 2 ï So how do computers work anyways?

S

R

8-bit Register 8

data in

8

Data out

Choosing between different signals - Multiplexers

Module 2 ï So how do computers work anyways?

x

y

select

Instructions

ÅComputers carry out simple instructions

ÅE.g.

Åadd CX,AX,BX ; Add AX+BX and store that value in CX

Åmov BX,2 ; Move the value 2 into BX

ÅñAXò, ñBXò, and ñCXò are stored in registers

ÅThe ñAX+BXò command uses an adder circuit

ÅEach command has an associated binary opcode

ÅEach register has an associated binary value

ÅIf 0010 is ñaddò, 0011 is ñset equalò, ñAXò is 00, ñBXò is 01 and ñCXò is 10, then

ÅSet CX=AX+BX may be coded as 0010 10 00 01

ÅSet BX=2 may be coded as 0011 01 0010

Module 2 ï So how do computers work anyways?

Putting it all together: how a CPU works

Module 2 ï So how do computers work anyways?

0011010010

Register AX

Adder

Circuit

Other 2-

Register

Circuit

Register BX

Register CX

Register IP

MOV

Other

constant

circuit

4

4

4

4

4

4

we

we

we

we

4

4

4x4

A CPU with main memory and instruction pointing

Module 2 ï So how do computers work anyways?

0011010010

Register AX

Adder

Circuit

Other 2-

Register

Circuit

Register BX

Register CX

Register IP

MOV

Other

constant

circuit

4

4

4

4

4

4

we

we

we

we

+1

Circuit

4

4

4x4

Reg MM 0000

Reg MM 0001

Reg MM 0010

Reg MM 0011

Reg MM 0100

Reg MM 0101

Reg MM 0110

Reg MM 0111

Reg MM 1000

Reg MM 1001

Reg MM 1010

Reg MM 1011

Reg MM 1100

Reg MM 1101

Reg MM 1110

Reg MM 1111

4

10

1

Machine code is for machines

ÅHumans canôt read it!

ÅWe usually write binary as hexadecimal (base 16)

ÅE.g. 0x2A or 0x45D3

ÅWe use assembly language instead of machine code

ÅAssembly language is: a command, then operands

ÅE.g. ñadd c,a,b ò

ÅIt converts to machine code: add c,a,b Ą 0010 100001

ÅConversion is one-to-one: assembly is just machine code with

nicknames!

ÅAssembly also has labels , which let us refer to memory by name rather

than address

ÅLetôs look at an example

Module 2 ï So how do computers work anyways?

Bin Dec hex

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

An assembly example

main:

mov AX,4

loop:

push AX

inc AX

push AX

pop BX

pop CX

cmp bx 7

jne main

push CX

call exit

Module 2 ï So how do computers work anyways?

Compilers create assembly code

ÅCompilers exist for many popular languages, such as C and FORTRAN

ÅWeôll try compiling math!

ÅGo to your shared folder is W: \ S-ECE-1, and find Omnicalx.exe

ÅTry entering a simple expression (like 1+1)

ÅNow, rather than hitting ñ=ò, press the arrow beside it, and select ñCompile to
Assemblyò > ñTarget WIN32ò

ÅThis time, use ñCompile to Executableò > ñTarget WIN32ò

ÅGo to the start menu, and type ñcmdò <enter>

ÅIn the command prompt, enter ñcd $TEMP%ò <enter>, then ñout.exeò

ÅTry it with Ǵ[n = 1 To 100] (n)@REG

Module 2 ï So how do computers work anyways?

Emulating machine code

ÅWe can look at what a computer does when running code like this

ÅTo do this, weôll emulate how a simpler processor runs ité

ÅGo to your shared folder is W: \ S-ECE-1, and find JIBc.exe

ÅAt the far right (you may need to click a down arrow to see it) press ñemulateò

ÅIn Omnicalx, enter an expression and ñCompile to Assemblyò > ñTarget JIBò

ÅCopy the code over into the leftmost pane of JIBc

ÅThe right pane shows the machine code!

ÅIn the emulator windows (Genoa) click ñloadò

ÅThen, ñstepò through (take care to watch the disassembly and registers)

ÅAlways keep in mind whatôs happening behind the scenes: latches are set/reset to change the
registers, IP is incremented to move to the next command, adder circuits perform addition,

multiplexers say which command to useé

Module 2 ï So how do computers work anyways?

Peripherals let the user talk to the computer!

ÅA mouse will set two registers with its X and Y coordinates

ÅA keyboard will set one with the key code being pressed or released

ÅA screen will show a portion of main memory (one byte red, one green,
one blue in a 3xnxm matrix to show nxm resolution)

ÅA bus allows one device to communicate with another

Module 2 ï So how do computers work anyways?

[15]

